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The low-temperature �4.2�T�12.5 K� magnetotransport �B�2 T� of two-dimensional electrons occupy-
ing two subbands �with energy E1 and E2� is investigated in GaAs single quantum well with AlAs/GaAs
superlattice barriers. Two series of Shubnikov-de Haas oscillations are found to be accompanied by magneto-
intersubband �MIS� oscillations, periodic in the inverse magnetic field. The period of the MIS oscillations
obeys condition �12= �E2−E1�=k ·��c, where �12 is the subband energy separation, �c is the cyclotron fre-
quency, and k is the positive integer. At T=4.2 K the oscillations manifest themselves up to k=100. Strong
temperature suppression of the magnetointersubband oscillations is observed. We show that the suppression is
a result of electron-electron scattering. Our results are in good agreement with recent experiments, indicating
that the sensitivity to electron-electron interaction is the fundamental property of magnetoresistance oscilla-
tions, originating from the second-order Dingle factor.
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The Landau quantization in quasi-two-dimensional �2D�
electron systems �with two or more occupied subbands�
manifests itself in two or more sets of Landau levels. Reso-
nance transitions of electrons between Landau levels corre-
sponding to different two-dimensional subbands1,2 causes the
so-called magnetointersubband �MIS� oscillations of the re-
sistance �xx.

3–5 The interaction between two subbands can be
also significant for other phenomena such as cyclotron
resonance.6 The position of the maxima of the MIS oscilla-
tions obeys the condition �12=E2−E1=k ·��c, where �12 is
the intersubband energy gap, Ei is the energy of the bottom
of ith subband, �c is the cyclotron frequency, and index k is
the positive integer. The oscillations, similar to well-known
Shubnikov-de Haas �SdH� oscillations, are periodic in the
inverse magnetic field and appear in classically strong mag-
netic fields. The amplitude of SdH oscillations is limited by
the broadening of Landau levels due to scattering and by
thermal broadening of the Fermi distribution. With increas-
ing temperature the thermal broadening of the Fermi distri-
bution becomes the dominant factor, limiting the amplitude
of SdH oscillations. MIS oscillations are significantly less
sensitive to the electron distribution and their amplitude is
predominantly determined by a quantum relaxation time
�q.4,5

MIS oscillations were recently observed in GaAs double
quantum wells with AlAs/GaAs superlattice barriers with
roughly equal electron densities in subbands �n1�n2�.7–10

The quantum lifetimes of the electrons in subbands was also
approximately equal ��q1��q2�.11 In the general case of two
populated subbands the amplitude of the MIS oscillations of
the resistance ��MISO depends on the sum of the quantum
scattering rates in each subband4,5

��MISO =
2m

e2�n1 + n2�
· �12

·exp�− ��/�c��1/�q1 + 1/�q2�� · cos�2��12

��c
� ,

�1�

where 1 /�qi and ni are the quantum scattering rate and elec-
tron density in ith subband, and m is electron band mass.
Parameter �12 is an effective intersubband scattering rate.5

In this Brief Report we investigate MIS oscillations in
GaAs single quantum well with AlAs/GaAs superlattice bar-
riers, when two subbands are occupied with substantially dif-
ferent densities. In the temperature range of T=4.2–12.5 K
a strong decrease in the amplitude of the MIS oscillations
with the temperature is observed. We consider the suppres-
sion of the MIS oscillations as a result of a temperature de-
pendence on quantum scattering times �qi. We have found
that the temperature variation in the sum of quantum scatter-
ing rates �1 /�q1+1 /�q2� is proportional to T2, indicating
dominant contribution of the electron-electron scattering to
the suppression of the MIS oscillations.

Heterostructures under the study were symmetrically
doped GaAs single quantum wells with a width of 26 nm and
AlAs/GaAs superlattice barriers.12,13 The diagram of the
quantum well with two occupied subbands E1 and E2 is pre-
sented in the inset of Fig. 1. The structures were grown on
GaAs substrates, whose deviation from the �100� plane did
not exceed 0.02°. The measurements were carried out in the
temperature range of T=4.2–12.5 K in the magnetic field
B�2 T on 450	50 
m Hall bars, fabricated using optical
lithography and liquid etching. Magnetoresistance �xx�B� and
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�xy�B� was measured using ac current Iac�1 
A in the fre-
quency range of 0.01–1 kHz. The total electron density, nT
=8.4·1011 cm−2, was calculated from the Hall resistance �xy
in magnetic field B=0.5 T. The electron mobility 
x
=7.4·105 cm2 /V s was obtained from nT and zero-field re-
sistance �xx�B=0�=�0 at liquid-helium temperature.

Figure 1 presents typical experimental curves of resis-
tance �xy�B� and �xx�B� in studied samples. In magnetic field
B�1 T the Hall resistance �xy�B� follows a straight line,
indicating negligible contributions of the Landau quantiza-
tion to the response. The slope of �xy�B� depends on the total
electron density nT. At T=4.2 K the longitudinal resistance
�xx oscillates with magnetic fields at B�0.07 T. For the
quantum well with two occupied subbands the oscillatory
part of �xx�B� contains two series of SdH oscillations and the
magnetointersubband oscillations,1–5 dominating at low mag-
netic fields B�0.5 T.

Figure 2 presents �xx�1 /B� dependence, demonstrating,
that �xx oscillations have only one period at the low magnetic
fields �1 /B�2 T−1�. The Fourier transform of the oscilla-
tory part of �xx�1 /B� is shown in the inset of Fig. 2. Three
frequencies, associated with the peaks and marked as f1, f2,
and f3, are identified as follows. The frequency f3 corre-
sponds to magnetointersubband oscillations, while f1
=13 T−1 and f2=4 T−1 correspond to two series of SdH
oscillations from the two subbands with electron densities
n1=2ef1 /h=6.3·1011 cm−2 and n2=2ef2 /h=1.9·1011 cm−2.
The frequency of the highest peak f3=9.1 T−1 equals �with
an accuracy of 1%� to the difference between the other two
frequencies f1− f2.

The sum of the two densities �n1+n2=8.2·1011 cm−2� is,
to a high degree of accuracy �2%�, equal to the total density
nT, calculated from the Hall resistance. The intersubband en-

ergy gap �12=15.8 meV, calculated from the frequency f3,
is in a good agreement with band-structure calculations of
the studied GaAs quantum well. Thus, the experimental data
indicate that the magnetoresistance oscillations �xx with fre-
quency f3 are the magnetointersubband oscillations and the
position of the oscillation maxima obeys the relation �12
=k ·��c, where �12=15.8 meV and k is the positive integer.
It is worth mentioning, that at helium temperatures our
samples show the MIS oscillations with the index k up to
100, indicating a very high quality of our samples. It has
provided the study of the oscillations in a very broad range
of the inverse magnetic fields.

Figure 3�a� presents the experimental dependences of
�xx /�0�1 /B� at temperatures of 4.2 and 12.5 K. One can see
a substantial suppression of MIS oscillations with the in-
crease of the temperature. Figure 3�b� shows the amplitudes
of the magnetointersubband oscillations plotted against 1 /B
on a semilogarithmic scale. In a wide range of magnetic
fields the amplitude of the oscillations are well approximated
by the expression �Eq. �1�� with a constant �B-independent�
intersubband scattering rate �12 and the B-independent
broadening of Landau levels ��1 /�qi�. At T=4.2 K and in
very small magnetic fields B�0.1 T the approximation
fails. Reasons of the discrepancy are not clear at the moment.
A failure of the linear approximation is also observable at
T=12.5 K at high magnetic fields. We attribute this discrep-
ancy to the influence of magnetophonon resonance seen in
high-mobility semiconductor structures at large filling
factors.14,15
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FIG. 1. Resistance �xy�B� and �xx�B� in GaAs quantum well
with AlAs/GaAs superlattice barriers at T=4.2 K. The inset shows
the diagram of the quantum well with two occupied subbands with
energies at the bottom of the subbands E1 and E2.

Ω

FIG. 2. Resistance �xx vs inverse magnetic field 1 /B in GaAs
quantum well with two occupied subbands E1 and E2 at T=4.2 K.
Arrows mark the positions of the maxima corresponding to k
=�12 /��c=15 and 100. The inset shows the Fourier transform of
the oscillatory part of the resistance �xx�1 /B�.
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Shown in Fig. 3�a�, the strong temperature dependence of
MIS oscillations indicates a significant variation in the quan-
tum lifetime of electrons �q with the temperature. Figure 4
presents the temperature dependence of the sum of quantum
scattering rates 1 /�q1+1 /�q2. In the plot each point is ex-
tracted from the slope of the dependence of the logarithm of
the amplitude of MIS oscillations on the inverse magnetic
field, measured at different temperatures �see Fig. 3�b��. In
accordance with Eq. �1�, the slope is proportional to the sum
1 /�q1+1 /�q2. We have found that the temperature variation
in the sum of the quantum scattering rates is well approxi-
mated by the square of the temperature. Figure 4 presents the
data plotted versus T2. A linear plot 1 /�q1+1 /�q2=A+B ·T2

provides a reasonable fit with A=0.142 �1 /ps� and B
=0.00415 �1 / �ps K2��.

Figure 4 shows that the temperature-dependent terms of
the inelastic-scattering rates are proportional to T2, indicating
the dominant contribution of the electron-electron interaction
to the broadening of the Landau levels. In accordance with
the theory,16,17 the contribution of the electron-electron inter-
action into the electron lifetime is proportional to T2 and
inversely proportional to the electron Fermi energy EF. For a
two-band system, we have used the following approximation
for the e-e scattering rate: 1 /�ee=�ef f�1 /EF1+1 /EF2� ·T2,
where EFi=EF−Ei is the Fermi energy counted from the bot-
tom of the ith band. A comparison between the expression
and the experiment yields �ef f �2, which is close to theoret-
ical estimations.

Elastic impurity scattering controls the temperature-

independent term A of the Dingle factor. The obtained value
of the sum of the impurity scattering rates A=1 /�q1

im+1 /�q2
im

=0.142 �1 /ps� indicates the impurity scattering time �q
im

�14 �ps� in one or both subbands, demonstrating again the
high quality of the measured structures. The inset in Fig. 4
shows temperature dependence of the transport scattering
rate 1 /�tr, obtained from the resistance at zero magnetic
field. The transport scattering rate depends weakly on the
temperature. We note also, that in the studied range of tem-
peratures, the value of the quantum scattering time �q is
found to be considerably less than the transport scattering
time �tr. The high value of the ratio �tr /�q1 is typical for
GaAs quantum wells with AlAs/GaAs superlattice barriers.12

In summary, we have experimentally studied the magne-
toresistance of GaAs quantum well with AlAs/GaAs super-
lattice barriers with two subbands occupied. Magnetointer-
subband oscillations of the resistance are found with the
period, determined by relation �12=k ·��c, where the index
k is up to 100 at T=4.2 K. The high value of the index k
provides measurements of the period with high accuracy,
which can be useful for accurate calibration of the magnetic
fields. The magnitude of the oscillations depends consider-
ably on temperature, pointing to a large temperature varia-
tion in the quantum scattering time of electrons �q. The
change in the quantum time is found to be proportional to the
square of the temperature. It reveals the electron-electron
interaction as the main agent, affecting the electron lifetime
�q. Our results are in good agreement with the recent experi-
mental observations,11,18–20 indicating that the sensitivity to
electron-electron scattering is the fundamental property of
magnetoresistance oscillations originating from the second-
order Dingle factor.

The authors thank L. I. Magarill for useful discussion.
The work was supported by RFBR under Project No. 08-02-
01051.

FIG. 4. Sum of the scattering rates �q=1 /�q1+1 /�q2 vs T2 in
GaAs quantum well with two occupied subbands. Straight line cor-
responds to �q=A+B ·T2 with A=0.142 and B=0.00415.

FIG. 3. �a� Normalized �xx /�0 vs 1 /B in GaAs quantum well
with two occupied subbands at temperatures 4.2 and 12.5 K. �b�
��MISO /�0 vs 1 /B at T=4.2 and 12.5 K. Straight lines correspond
to Eq. �1� ��MISO /�0=exp�−�� /�c� · �1 /�q1+1 /�q2��.
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